
 1

Abstract—The data produced by sensors are expected to grow
exponentially in the next several years. In particular, e-science
applications need to move big data for remote analysis or data
distribution, which is required to efficiently utilize distributed
resources such as supercomputers, data centers, scientific
instruments and the network that connects these facilities. In this
article, we evaluate prior work on data transfer over wide-area
networks focusing on parallel and cross-layer optimization
methods. The cross-layer optimization methods reduce the
overhead incurred by many layers or improve the performance
of data transfer by appropriately using the information of layers
in a holistic way. The goal of this study is to help researchers
focus more on unexplored areas, e.g., multipath-aware network
protocols, to better handle big data.

I. INTRODUCTION
In the era of big data, both compute-intensive computing,
which is usually called extreme-scale computing, and
data-intensive computing are crucial in high-performance
computing communities. Extreme-scale computing seeks for
novel solutions scalable up to millions of cores, which will be
realized in near future. Likewise, data-intensive computing is
becoming more important as the data growth rates in most
areas of sciences as well as general information technology
areas are projected to dramatically increase up to petabytes per
application. Consequently, data movement in data-intensive
computing is one of the key factors influencing overall
performance of such data-intensive workflows.

Data movements happen in micro and macro level among
compute, network, and data storage elements. In micro-level
data movements, circuit level studies such as network on chip
are exemplary. In macro-level data movements, data
movements among independent compute/storage boxes are
typical research issues. In this article, we focus on data
movement mechanisms and techniques from the perspectives
of distributed workflow execution. The distributed workflow
are becoming prevailing in scientific computing where
experimental facilities such as DOE light source facilities,
observational instruments such as telescopes, and computing
facilities, e.g., supercomputers, are usually geographically
distributed, which makes data movements over wide-area
networks (WAN) inevitable.

There has been a huge amount of work to improve data
movement rates with the emergence of new network
technologies, new storage technologies, and so on. In
particular, the exploitation of parallelism inherent in systems
involved in the end-to-end data movement path has been
successful in scaling data movement throughput. One simple
example is striping data among multiple physical disks as in

redundant array of independent disks (RAID). We first present
what system components are involved in the end-to-end data
movement in distributed data-intensive workflow based on a
layered model. We then give an overview of prior work in the
context of parallel computing so that readers can see which
layers are fully utilizing parallelism and which layers still have
room for further improvement.

In addition to advances through parallel computing in each
layer, cross-layer optimization has been another approach
taken to either reduce unnecessary overhead through
bypassing layers or apply other layers’ information to efficient
decision making. One simple example is combining disk
throughput information and network bandwidth information to
determine the number of TCP streams required to maximize
the data movement throughput.

The remainder of the article is organized as follows. In
Section II, we describe preliminaries on data movements in
the context of distributed data-intensive workflow. In Section
III, we present a layered model, and categorize and elaborate
prior work regarding parallel computing for big data transfer
based on the model. In Section IV, we give an overview on
cross-layer optimization approaches for efficient data
movement. In Section V, we briefly summarize the article.

II. OVERHAUL OF DATA TRANSFER
The end-to-end data transfer spans from disks via network to
disks, and goes through many other hardware or software
components related to the data transfer. Figure 1 captures the
major system components participating in data transfers often
happening in distributed workflow. A data transfer is initiated
by a user or a workflow management module. The data
transfer request is eventually carried out by hosts. In case of
large computing facilities such as Argonne Leadership
Computing Facility (ALCF), dedicated computers, called data
transfer nodes (DTNs), are used to switch between network
and disks.

The host sending data reads data from disks and sends them
to another host over networks. The host receiving data does
the same series of work in reverse order. For a storage
operation such as a read or write, the request is processed by
several layers of system software such as file system, logical
device drivers, and hardware device drivers. Current storage
systems are massively parallel rather than a single disk and
may be front-ended by a complex parallel file system (PFS)
stack in case of large high performance computing facilities.
Typically, the PFS is shared by compute nodes and data
transfer nodes. A single application I/O request may be split
into several “physical” I/O requests, and these requests must

An Overview of Parallelism Exploitation and
Cross-layer Optimization for Big Data Transfers

Eun-Sung Jung, Member, IEEE, and Rajkumar Kettimuthu, Senior Member, IEEE

 2

pass through the interconnection switch that connects the host
bus adapter on the computer system and the disk array
controller. The disk array controller takes the I/O request and
creates one or more I/O requests to the individual disks in the
array. The data is then transferred between the disk drive and
the application memory space with multiple buffering along
the way.

The sender may want to apply data preprocessing filters to
data streams before it send them out to networks. The typical
data preprocessing filters are compression and encryption,
which are independent of internal data processing of
applications. The multiple cores in the host, which are
indicated by capital C in the Figure 1, are used to execute data
preprocessing filters in parallel. Multiple network interface

cards (NICs) can be engaged to achieve higher throughput
beyond the capacity of each NIC. The network paths that
transfer data between two sites are contingent on network
properties. For example, if network connecting the sites is a
dynamic circuit network supporting deterministic network
paths with bandwidth guarantee, static network paths with
fixed bandwidth can be set up for data transfers between two

hosts. The workflow management module may engage
multiple hosts for data transfers between two sites if
necessary. We describe detailed previous research work in
each layer in the following section.

III. PARALLELISM EXPLOITATION
In general, parallel computing can be classified into three

categories: data parallelism, task parallelism, and pipeline
parallelism. We use this criterion to classify previous studies
and map those representative studies in Table 1. The layers in
Table 1 are extracted from system layers in Figure 1. Four
layers are defined; distributed workflow, network, application,
and storage layers. The distributed workflow layer deals with
data transfer among applications over networks, which are
typically LAN or WAN. The network layer deals with
network routing and protocols for data transfers. The network
layer is further divided into two sub-layers, middleware and
network protocol. The application layer deals with
orchestrating data streams in the application level. The
application layer is also further divided into two sub-layers,
data stream transporting and data stream processing layers.
The storage layer deals with disk request handling from
applications down to physical disks. The storage layer also has
two sub-layers, file system and storage system layers.

A. Data Parallelism
Data parallelism refers to multiples instances of a single

task running on different datasets. Accordingly, distributing
datasets to multiple computing nodes is a main issue in data
parallelism.

In the storage layer, parallel file system (PFS) and
high-performance storage system (HPSS) are prominent in
terms of parallelism. IBM’s General Parallel File System
(GPFS) [9], Luster, and PVFS are most adopted PFSs. Such
parallel file systems have multiple file servers and metadata
servers, both of which provide file system I/O services to file
system clients. Exceptionally, PVFS has a single metadata
server called MGR, which is featured by one-time MGR
access by file system clients to avoid MGR bottleneck. The
number of file system clients can amount up to millions, and
the file servers and MDSs are running in parallel to achieve

TABLE I
PARALLELISM IN BIG DATA TRANSFERS

Layer\Parallelism Data Parallelism Task Parallelism Pipeline Parallelism

Distributed Workflow Data flow based parallel workflow
scheduling [1,2]

Control flow based workflow
scheduling [1]

Overlapping execution with data
staging [2]

Network
Middleware Multipath (OSCARS) [3]

Network
Protocol MPTCP [4] GridFTP-pipeline [5]

Application

Data Stream
Transporting GridFTP-parallel data streams [5] GridFTP-cluster-to-cluster(striped)

server [6]

Data Stream
Processing Parallel Compression [7] Parallel Data Stream Processing

[1,8]

Storage
File System PFS-parallel data access [9] PFS-parallel file service [9] IOFL-pipeline data transfer [10]

Storage System HPSS-striped data storage [11] HPSS-concurrent servers [11]

Fig. 1. System overhaul regarding data transfer

 3

extreme scalability and throughput in HPC systems. HPSS
[11] is storage software developed by IBM in conjunction with
DOE national labs over a decade. In particular, the GPFS
architecture is built on shared disks and provides parallel data
access for multiple file system nodes through data parallelism.
Similarly HPSS achieves high aggregate disk throughput by
appropriately using data parallelism such as striped data
storage.

In the application layer, GridFTP uses parallel data streams
to transport portions of a large file in parallel [5]. The data
processing ahead of transporting such as compression [7] and
encryption can also be performed in parallel. Bicer et al. [7]
proposes an online parallel compression/decompression
framework for data-intensive applications, which is shown to
benefit data-intensive applications by amortizing I/O time.
Data compression utilizing CPU resources helps reduce
network bandwidth consumption and improve the overall data
transfer throughput especially in case of network bottleneck.

In the network layer, many studies including congestion
control and stability [4] have been done for multi-path TCP
(MPTCP) to achieve higher data transfer throughput beyond a
single path TCP. MPTCP is now concrete proposal for IETF.
However, MPTCP by itself cannot know or guarantee the use
of multiple independent network paths between the source and
the destination. MPTCP just tries to use multiple network
interfaces in a multi-homed host while establishing the TCP
connections. Dynamic circuit network services such as
OSCARS [3] support multiple network paths in network
infrastructure level. In OSCARS, a centralized manager sends
controls messages switches/routers to set up deterministic
network paths over wide-area networks. The virtual circuits in
OSCARS are managed in layer 3 network level using
multi-protocol label switching (MPLS) and resource
reservation protocol (RSVP). The separation of control plane
and data plane in OSCARS is similar to the design principle of
the emerging software-defined networking (SDN) technology.

In the distributed workflow layer, massively parallel
workflow scheduling for a large number of datasets
corresponds to data parallelism. Several workflow
management systems supporting data flow control including
Swift [2], Wings for Pegasus [1], and Askalon [1] can
distribute datasets to multiple distributed computation sites for
the same data processing task.

B. Task Parallelism
Task parallelism refers to multiple tasks concurrently

executing on different cores. Accordingly, distributing tasks to
multiple computing nodes is a main issue in data parallelism.

The distributed lock manager in PFS such as GPFS [9] and
Lustre overcomes the bottleneck of a centralized lock manager
so that it can scales up to a large number of nodes, which
exploits task parallelism. Likewise, the HPSS architecture has
multiple concurrent servers with diverse functions such as
metadata management and migration, which utilizes task
parallelism.

In the application layer, GridFTP cluster-to-cluster
architecture [6] provides striped or interleaved data transfer

across multiple nodes in clusters. Although the architecture is
more close to data parallelism from a perspective of one file
transfer, it can be regarded as an architecture using task
parallelism in a sense that multiple data transfer requests can
be handled in different sets of nodes in clusters. Regarding
data stream processing, general parallel data streaming
platforms such as IBM InfoSphere [8] inherently exploit task
parallelism by mapping data stream task graphs onto
multicores in a server farm. Even though current
implementation such as Globus XIO [14] assumes a serial data
processing task session, e.g., encryption followed by
compression, more complex data processing tasks, e.g.,
parallel execution of compression and checksum computation
followed by a merge of each result, can benefit from task
parallelism as in IBM InfoSphere.

In the distributed workflow layer, usual workflow
schedulers [1] utilize task parallelism inherent in task graphs,
which formally specify workflows, by running tasks without
precedent constraints concurrently on different compute
resources.

C. Pipeline Parallelism
Pipeline parallelism refers to a succession of tasks, each of

which runs independently, that a stream of data passes
through. Accordingly, distributing pipeline tasks to multiple
computing nodes and determining appropriate data exchange
size among pipeline tasks are main issues in pipeline
parallelism.

Ohta et al. [10] propose pipeline transfer optimization for
the I/O forwarding layer, which is used to eliminate I/O
bottleneck from computing nodes to storage systems by
reducing the number of I/O requests. The basic idea of
pipeline transfer optimization is overlapping application I/O
requests and file system I/O requests in which I/O requests
pass through client I/O, IOFL, and PFS layers.

In the network layer, GridFTP enhances standard FTP
through data channel reuse and pipelining control message
exchange and file transfer. The standard FTP can send only
one file once data channel is established. GridFTP makes data
channel reusable for multiple file transfers. Regarding file
transfers, control message exchange precedes a file transfer,
and standard FTP cannot overlap control message exchange
with a file transfer. In case of multiple small file transfers, this
mechanism exacerbates overall file transfer time due to
increased unnecessary overhead, which is called the lots of
small files (LOSF) problem. By overlapping control message
exchange with actual file data transfer, GridFTP can expedite
multiple small file transfers [5].

In the distributed workflow layer, Jung et al. [2] propose
algorithms and mechanisms to overlapping data transfers and
computation. In the context of distributed workflow execution,
multiple jobs may be concurrently executed across multiple
computation sites. Without loss of generality, a job can be
simplified as a sequence of three phases; stage-in, execution,
and stage-out. In the stage-in phase, the input data for the
computation is moved to the computation site and
computation on the data follows. The output data of the

 4

computation is sent out to the next distributed sites on which
descendent jobs are scheduled. By overlapping those three
phases, the execution time of distributed parallel jobs is
significantly improved [2].

D. Discussion
In most areas, parallel computing techniques have been

successfully applied, and it led to significant performance
improvements. However, current data transfers are being
carried out either by compute nodes, which means data
transfer is not first priority jobs in those nodes, or by DTNs,
which are high-end computers dedicated for data movement.
This may have been enough for current data transfers, but
high-performance data transfers with increased amount of data
and stricter quality of service requirements will require
innovative data transfer mechanisms and infrastructures. For
example, current Globus XIO framework on which GridFTP is
built, does not fully exploit parallelism as much as IBM
InfoSphere does. This may be because current needs for data
preprocessing are limited to several basic functions such as
compression and accordingly thin software layer is preferred.
With increased demand for data preprocessing at the level of
data transfers and the emergence of cheaper multicore
systems, DTNs may need more sophisticated parallel
computing mechanisms.

IV. CROSS-LAYER OPTIMIZATION
The purpose of cross-layer optimization is twofold: 1)

Overhead reduction and 2) Impedance matching. Some layers
in Figure 1 can be bypassed to reduce overhead introduced by
deep layers. For overhead reduction in data transfer, thorough
analysis has to be done to understand the tradeoff between the
flexibility that a layer brings in versus the overhead. Cautious
decision can be made to eliminate overhead introduced by
multiple layers by merging/bypassing one or more layers or
making a layer as thin as possible. The second purpose is
impedance matching, which tries to avoid overprovisioning or
underprovisioning of resources while achieving the maximum
data transfer throughput. For example, if the maximum disk
throughput obtained from the storage system is limited by 100

MB, we do not have to request for a network path with 200
MB bandwidth.

A. Reducing Overhead
In the storage layer, one approach to reduce overhead is by

merging two sub-layers, i.e., file system and storage system, is
GPFS Native RAID [9]. GPFS Native RAID embeds a GPFS
I/O node onto the external RAID controller such that the
single merged layer brings declustered RAID rebuild
management function into GPFS, which is much faster than
the previous two-layer approach, and eliminates the need for a
storage controller. Even though this study is not directly
related to data transfers, this study is meaningful in a sense
that data transfer during disk failure can maintain throughput
comparable to data transfer during normal operation in RAID
disks.

Across the storage, the application, the network layers, the
remote direct memory access (RDMA) [13] has been proposed
to reduce overhead incurred from redundant copies at each
protocol layer and host CPU involvement by direct
memory-to-memory data movement from one host to another.
RDMA does not require CPU or caches by enabling network
adaptors to transfer data from/to application buffers, which
bypasses file system and network protocol. Kissel et al. [13]
shows that RDMA over WAN performs significantly better
than TCP with a fraction of CPU power.

B. Impedance Matching
The Globus eXtensible I/O (XIO) [14] system is a unified

framework integrating disk I/O, data processing, and network
I/O. The Globus XIO architecture is a software layer model
where users can put as many layers as they need for their
purpose. For example, if a user needs to send compressed data
using UDT protocol, the user can just configure the Globus
XIO stack with a compression layer and a UDT layer on top of
it. The Globus XIO itself does not address any cross-layer
optimization problem, but provides a solid abstract model,
which any optimization techniques can be developed based on.
Jung et al. [14] addresses the cross-layer optimization problem
by allocating variable numbers of threads to different layers in

TABLE II
CROSS-LAYER OPTIMIZATION

Layer Cross-layer Approach

Distributed Workflow Multipath
/Network-centric
workflow
scheduling [12]

Network
Middleware MPTCP based

on determined
paths

End-system
aware data

movement [15]

Network
Protocol

RDMA [13],
Globus XIO [14] Application

Data Stream
Transporting

Data Stream
Processing PFS & Data

Processing
embedded in

Storage Systems Storage
File System PFS embedded

in Storage
Systems [9]

Storage
System

 5

order to prevent a certain layer from being a bottleneck while
improving performance. For example, say that two layers, a
compression layer and a TCP layer, are involved. The
compression layer is compute-intensive compared with TCP
layer and more number of threads needs to be allocated for the
compression layer.

Spanning from the network layer to the distributed
workflow layer, multipath/network-centric workflow
scheduling [12] is one example of cross-layer optimization
approaches. Basically, multipath/network-centric workflow
scheduling takes into account compute resources and network
resources at the same time. Whereas general workflow
scheduling first schedule compute resources and later
determine network paths, multipath/network-centric workflow
scheduling tries to determine compute resources and network
paths at the same time, even further exploring multiple
network paths for data transfer between two sites. In this way,
the number and bandwidth of network paths are optimized for
overall workflow execution time (makespan), which means
data transfer throughput is well matched with computation site
throughput.

In a broader sense, there have been few studies to optimize
throughput/impedance of all system components involved in a
complete end-to-end data transfer path. Jung et al. [15] models
all system components using a graph data structure and
models throughput of a system component as a bandwidth
capacity function of a link in the graph model. Based on the
graph model, linear programming based optimization
techniques have been develop to maximize overall throughput.

C. Discussion
As system architecture becomes more deep and

heterogeneous, the cross-layer optimization problems get more
complex and even intractable. The overall system architecture
should be carefully designed according to the design goal. For
example, latency or jitters are crucial issues for real-time
visualization applications. In such cases, more layers for
flexibility are not good options, and reduced layers and
cross-layer optimization techniques should be instead sought
after. This article is to give an overview of current cross-layer
optimization techniques and may help identify unexplored
research areas. The dark shade squares in Table II show
examples of some ideas. First, MPTCP may be more tuned for
performance enhancement if we know how many paths are
available and the characteristics such as delays are known
ahead. The other example can be data processing functions as
well as PFS are also embedded in storage systems. We know
similar ideas are being proposed such as ‘Smart SSD’, which
pursue the key concept of putting computation near data to
reduce data movement bottleneck, One example of Smart SSD
proposals is query processing on Smart SSDs. However, those
ideas should be viewed from the perspectives of overall data
transfer architecture, too.

V. SUMMARY
In this article, we give an overview of big data transfer from

the perspectives of parallelism exploitation and cross-layer

optimization. We present a system layer model to classify the
prior work in the literature and identify the unexplored
research area. Exploiting parallelism has improved big data
transfer performance drastically and some areas need more
tuning and integration work to apply the state of the art to
them. The cross-layer optimization relatively has not been
extensively researched yet, and remains as an active research
issue.

ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357.

REFERENCES
[1] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and

e-Science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 528–540, May
2009.

[2] Eun-Sung Jung, Ketan Maheshwari, and Rajkumar Kettimuthu,
“Pipelining/Overlapping Data Transfer for Distributed Data-Intensive
Job Execution,” in 10th International Workshop on Scheduling and
Resource Management for Parallel and Distributed Systems (SRMPDS),
2013.

[3] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, and W.
Johnston, “Intra and Interdomain Circuit Provisioning Using the
OSCARS Reservation System,” in 3rd International Conference on
Broadband Communications, Networks and Systems, 2006.
BROADNETS 2006, 2006, pp. 1–8.

[4] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley,
“Multi-path TCP: A Joint Congestion Control and Routing Scheme to
Exploit Path Diversity in the Internet,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1260–1271, Dec. 2006.

[5] E. Yildirim, J. Kim, and T. Kosar, “How GridFTP Pipelining,
Parallelism and Concurrency Work: A Guide for Optimizing Large
Dataset Transfers,” in High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion:, 2012, pp. 506–515.

[6] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I.
Raicu, and I. Foster, “The Globus Striped GridFTP Framework and
Server,” in Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, Washington, DC, USA, 2005, p. 54–.

[7] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, “Integrating
Online Compression to Accelerate Large-Scale Data Analytics
Applications,” in 2013 IEEE 27th International Symposium on Parallel
Distributed Processing (IPDPS), 2013, pp. 1205–1216.

[8] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O.
Verscheure, H. Koutsopoulos, and C. Moran, “IBM Infosphere Streams
for Scalable, Real-time, Intelligent Transportation Services,” in
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, 2010, pp. 1093–1104.

[9] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in Proceedings of the Conference on
File and Storage Technologies, Berkeley, CA, USA, 2002, pp. 231–244.

[10] K. Ohta, D. Kimpe, J. Cope, K. Iskra, R. Ross, and Y. Ishikawa,
“Optimization Techniques at the I/O Forwarding Layer,” in 2010 IEEE
International Conference on Cluster Computing (CLUSTER), 2010, pp.
312–321.

[11] HPSS - High Performance Storage Systems, [Online]. Available:
http://www.hpss-collaboration.org/index.shtml.

[12] E.-S. Jung, S. Ranka, and S. Sahni, “Workflow scheduling in e-Science
networks,” in 2011 IEEE Symposium on Computers and
Communications (ISCC), 2011, pp. 432–437.

[13] E. Kissel and M. Swany, “Evaluating High Performance Data Transfer
with RDMA-based Protocols in Wide-Area Networks,” in Proceedings
of the 2012 IEEE 14th International Conference on High Performance
Computing and Communication & 2012 IEEE 9th International
Conference on Embedded Software and Systems, Washington, DC,
USA, 2012, pp. 802–811.

 6

[14] Eun-Sung Jung, Rajkumar Kettimuthu, and Venkatram Vishwanath,
“Cluster-wise disk-to-disk transfer with data compression over
wide-area networks”, ANL techreport.

[15] Eun-Sung Jung, Rajkumar Kettimuthu, and Venkatram Vishwanath,
“Toward optimizing disk-to-disk transfer on 100G networks,” in IEEE
International Conference on Advanced Networks and
Telecommunications Systems, 2013.

BIOGRAPHIES
Eun-Sung Jung (esjung@mcs.anl.gov) is a postdoctoral
researcher in the Mathematics and Computer Science Division
at Argonne National Laboratory. He earned a Ph. D. in the
Department of Computer and Information Science and
Engineering at the University of Florida. He also received B.S.
and M.S. degrees in electrical engineering from Seoul
National University, Korea, in 1996 and 1998, respectively.
He also held a position of a research staff member at Samsung

Advanced Institute of Technology from 2011 to 2012. His
current research interests include cloud computing, network
resource/flow optimization, and real-time embedded systems.

Raj Kettimuthu (kettimut@mcs.anl.gov) is a project leader in
the Mathematics and Computer Science Division at Argonne
National Laboratory and a fellow at University of Chicago's
Computation Institute. His research interests include transport
protocols for high-speed networks; research data management
in distributed systems; and the application of distributed
computing to problems in science and engineering. He is the
technology coordinator for Globus GridFTP, a widely used
data movement tool. He has published over 60 articles in
parallel, distributed and high performance computing. He is a
senior member of IEEE and ACM.

